Improving vector vortex waveplates for high-contrast coronagraphy
Vector vortex waveplates (VVWs) open the door to new techniques in stellar coronagraphy and optical communications, but the performance of currently available liquid-crystal-polymer-based VVWs tends to be limited by defects in the axial region of the vortex pattern. As described here, several steps...
Gespeichert in:
Veröffentlicht in: | Optics express 2013-04, Vol.21 (7), p.8205-8213 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vector vortex waveplates (VVWs) open the door to new techniques in stellar coronagraphy and optical communications, but the performance of currently available liquid-crystal-polymer-based VVWs tends to be limited by defects in the axial region of the vortex pattern. As described here, several steps allow for a reduction in the size of such axial defects, including the use of photoalignment materials with high photosensitivity and reversible response, and a reduction in exposure energy. Moreover, redistributing the writing beam's intensity from the axial region to its periphery (using a VVW) allows the production of large area VVWs with a small defect area. Finally, using VVWs as linear to axial polarization converters allows producing VVWs of higher topological charge, while also reducing the photoalignment time to a few minutes. These steps have allowed the fabrication of VVWs with topological charges of 1 and 2 with central defect sizes below 3 μm. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.21.008205 |