Peroxisome proliferator-activated receptor-γ mediates the anti-inflammatory effect of 3-hydroxy-4-pyridinecarboxylic acid derivatives: synthesis and biological evaluation
Seven 3-hydroxy-4-pyridinecarboxylic acid derivatives (HPs), aza-analogues of salicylic acid and structurally close to other potent inflammatory pyridine compounds such as aminopyridinylmethanols and aminopyridinamines, were synthesized, and their anti-inflammatory activity was evaluated. The synthe...
Gespeichert in:
Veröffentlicht in: | European journal of medicinal chemistry 2013-04, Vol.62, p.486-497 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Seven 3-hydroxy-4-pyridinecarboxylic acid derivatives (HPs), aza-analogues of salicylic acid and structurally close to other potent inflammatory pyridine compounds such as aminopyridinylmethanols and aminopyridinamines, were synthesized, and their anti-inflammatory activity was evaluated. The synthesis was performed by adopting a general procedure involving an intramolecular Diels-Alder cycloaddition of oxazoles with acrylic acid to form various substituted pyridinic acids. The newly synthesized HPs did not exhibit cytotoxic activity on human monocytes-derived macrophages at concentrations up to 10(2) μM. Anti-inflammatory activity of the compounds was screened in vitro by evaluating the capability to inhibit cytokines release from lipopolysaccharide (LPS) stimulated human macrophages. 3-Hydroxy-1-methyl-4-pyridinecarboxylic acid (24) was found to be the most active HP. At 10 μM concentration, HP 24 reduced LPS-induced and nuclear factor-κB activation and cyclooxygenase-2 expression, while increased intracellular reactive oxygen species generation and peroxisome proliferator-activated receptor (PPAR-γ) mRNA transcript level. Indeed, pre-treatment of LPS-exposed human macrophages with PPAR-γ specific antagonist completely prevented HP 24-induced TNF-α and IL8 down regulation, demonstrating that the PPARγ pathway is mandatory for the HP 24 anti-inflammatory effect. Finally, daily treatment with HP 24 ameliorated the outcome of DSS-induced colitis in mice, significantly reducing colonic MPO activity and IL-1β tissue levels. |
---|---|
ISSN: | 0223-5234 1768-3254 |
DOI: | 10.1016/j.ejmech.2013.01.024 |