Genetic variants of the APE1 gene and the risk of vitiligo in a Chinese population: A genotype–phenotype correlation study
Vitiligo is an acquired depigmentation disorder, and reactive oxygen species play an important role in melanocyte damage. Base excision repair is the major pathway responsible for removing reactive oxygen species-induced DNA damage, in which APE1, ADPRT, and XRCC1 play key roles. To investigate the...
Gespeichert in:
Veröffentlicht in: | Free radical biology & medicine 2013-05, Vol.58, p.64-72 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vitiligo is an acquired depigmentation disorder, and reactive oxygen species play an important role in melanocyte damage. Base excision repair is the major pathway responsible for removing reactive oxygen species-induced DNA damage, in which APE1, ADPRT, and XRCC1 play key roles. To investigate the association between genetic variations of these genes and the risk of vitiligo in Chinese populations, we genotyped APE1-Asp148Glu, ADPRT-Val762Ala, and XRCC1-Arg399Gln polymorphisms and measured serum 8-OHdG levels in a hospital-based case–control study. We found that a significantly increased risk of vitiligo was associated with the APE1 Asp/Glu (adjusted odds ratio (OR) 1.24; 95% confidence interval (CI) 1.02–1.52) and Glu/Glu genotypes (adjusted OR 1.48; 95% CI 1.13–1.93), compared with the APE1 Asp/Asp genotype, whereas no vitiligo risk was associated with the genotypes ADPRT-Val762Ala and XRCC1-Arg399Gln. Furthermore, serum 8-OHdG levels were elevated in the APE1-148Glu allele carriers (Asp/Glu+Glu/Glu), in an allele dose-response manner, with the risk of vitiligo (Ptrend |
---|---|
ISSN: | 0891-5849 1873-4596 |
DOI: | 10.1016/j.freeradbiomed.2013.01.009 |