Evidence of a climatic niche shift following North American introductions of two crane flies (Diptera; genus Tipula)
Ecological niche models assume a species niche should be conserved over space and time. Increasingly, studies have determined that niche shifts may occur during biological invasion events. The aim of this study is to examine niche conservation for two invasive crane flies , Tipula oleracea Linnaeus...
Gespeichert in:
Veröffentlicht in: | Biological invasions 2013-04, Vol.15 (4), p.885-897 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ecological niche models assume a species niche should be conserved over space and time. Increasingly, studies have determined that niche shifts may occur during biological invasion events. The aim of this study is to examine niche conservation for two invasive crane flies
, Tipula oleracea
Linnaeus and
Tipula paludosa
Meigen, after introductions into North America. These species have broadly sympatric invasive distributions but differ in time since introduction and dispersal abilities. As these factors may impact the area accessible to dispersal, I examined the impact of background area delineation on conclusions of niche conservation. Results indicated that alternative delineations of accessible area (i.e., background area) had no affect on measures of niche equivalence. Neither
Tipula
species was found to be occupying invasive niche space equivalent to that of their native ranges. Niche dissimilarity was found for both species, with results strongly impacted by the choice of background area.
T.
paludosa
introductions displayed a niche shift across both invasive introductions when the model area drew climatic information from an area that buffered occurrences by 40 km. The eastern
T.
oleracea
introduction displayed a niche shift when background information was drawn from within a 400 km buffered area. This study suggests that invasive populations may be displaying a niche shift when evaluated against one scale of background but conserved when evaluated against another scale. Dispersal limitations for
T
.
oleracea
in its eastern introduction and anthropogenic habitat associations for
T
.
paludosa
across both invasive introductions are indicated as causes for the observed niche shifts. The results of this study highlight the importance of carefully delineating the area accessible to invasive species in studies of niche conservation. Furthermore, it indicates that examining several spatial extents of background areas can be beneficial when examining niche conservation for species in non-equilibrium states. |
---|---|
ISSN: | 1387-3547 1573-1464 |
DOI: | 10.1007/s10530-012-0337-3 |