Fractions of Cu, Cd, and enzyme activities in a contaminated soil as affected by applications of micro- and nanohydroxyapatite
Purpose With the rapid development of nanotechnology, hydroxyapatite-based nanoparticles have been applied in wastewater and soil remediation. However, limited studies have been conducted on the remediation of heavy metal-contaminated soils by microhydroxyapatite (MHA) and nanohydroxyapatite (NHA)....
Gespeichert in:
Veröffentlicht in: | Journal of soils and sediments 2013-04, Vol.13 (4), p.742-752 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
With the rapid development of nanotechnology, hydroxyapatite-based nanoparticles have been applied in wastewater and soil remediation. However, limited studies have been conducted on the remediation of heavy metal-contaminated soils by microhydroxyapatite (MHA) and nanohydroxyapatite (NHA). Thus, we investigated the effects of MHA and NHA on soil pH values and fractions of copper (Cu) and cadmium (Cd). The changes of soil enzymes with application of MHA and NHA were also evaluated.
Materials and methods
Pots contained 200 g of the soil with MHA and NHA ranging from 1 % to 5 % incubated for 60 days under greenhouse condition, and maintained at 60 % of soil water holding capacity by adding deionized water. Soil pH, catalase, urease, and acid phosphatase were analyzed at incubation times of 7, 14, 30, and 60 days by chemical assays. The fractions of Cu and Cd were analyzed after 60 days by a sequential extraction procedure.
Results and discussion
Application of MHA and NHA significantly increased soil pH values. Especially, we found for the first time that soil pH values with 3 % (pH > 7.90) and 5 % (pH > 8.83) application rates of MHA were larger than that of MHA itself (pH = 7.71). MHA was more effective than NHA in immobilizing Cu and Cd by significantly decreasing exchangeable fractions of Cu and Cd and transforming them from active to inactive fractions. Soil catalase and urease significantly increased, but acid phosphatase apparently decreased with increasing application rates of MHA. However, three enzymes activities changed slightly for NHA treatments.
Conclusions
MHA was more effective than NHA in immobilizing Cu and Cd. MHA had a more positive effect on soil catalase and urease activities than NHA. Furthermore, Pearson’s correlation coefficients showed that soil pH value was a key factor to influence the bioavailability of Cu and Cd and the activity of soil enzymes. The results of this study provided an efficient method for the remediation of heavy metal-contaminated soils. |
---|---|
ISSN: | 1439-0108 1614-7480 |
DOI: | 10.1007/s11368-013-0654-x |