Sequential comprehensive chromosome analysis on polar bodies, blastomeres and trophoblast: insights into female meiotic errors and chromosomal segregation in the preimplantation window of embryo development

STUDY QUESTION What is the optimal stage from oocyte through preimplantation embryo development for biopsy and preimplantation genetic screening (PGS) to detect abnormal chromosome segregation patterns in eggs or embryos from advanced maternal age (AMA) patients? SUMMARY ANSWER Testing at the polar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human reproduction (Oxford) 2013-02, Vol.28 (2), p.509-518
Hauptverfasser: Capalbo, Antonio, Bono, Sara, Spizzichino, Letizia, Biricik, Anil, Baldi, Marina, Colamaria, Silvia, Ubaldi, Filippo Maria, Rienzi, Laura, Fiorentino, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:STUDY QUESTION What is the optimal stage from oocyte through preimplantation embryo development for biopsy and preimplantation genetic screening (PGS) to detect abnormal chromosome segregation patterns in eggs or embryos from advanced maternal age (AMA) patients? SUMMARY ANSWER Testing at the polar body (PB) stage was the least accurate mainly due to the high incidence of post-zygotic events. This suggests that postponing the time of biopsy to the blastocyst stage of preimplantation embryo development may provide the most reliable results for PGS. WHAT IS KNOWN ALREADY In the PGS field there is an ongoing debate about the optimal biopsy stage for PGS. This is a result of the lack of understanding of how aneuploidy arises in the human embryo. To date, most of the cytogenetic data obtained during PGS investigations have been derived through the analysis of cells at isolated points in the preimplantation window, thus potentially missing critical information on chromosomal segregation. Understanding the chromosome segregation patterns during preimplantation development holds the potential to significantly increase the success rates of IVF. In this study, a sequential comprehensive chromosome analysis of both the PBs and the corresponding embryos at both the cleavage and the blastocyst stages is presented. STUDY DESIGN, SIZE, DURATION This is a prospective longitudinal cohort study performed between October 2009 and August 2011 involving 9 infertile couples and 21 sets of complete comprehensive chromosomal screening data, including PB1, PB2, corresponding blastomeres and trophectoderm (TE) samples. PARTICIPANTS/MATERIALS, SETTING, METHODS Infertile couples undergoing IVF cycles with PGS where the female partner was older than 40 years and with a good response to controlled ovarian stimulation (>10 MII oocytes retrieved) were enrolled into the study. The exclusion criteria were (i) patients presenting with abnormal karyotype; (ii) specific ovarian pathologies including polycystic ovary syndrome, endometriosis grade III or higher and premature ovarian failure and (iii) severe male factor infertility (motile sperm count of
ISSN:0268-1161
1460-2350
DOI:10.1093/humrep/des394