Quantitative examination of stimulus-response relations in cortical networks in vitro
Variable responses of neuronal networks to repeated sensory or electrical stimuli reflect the interaction of the stimulus' response with ongoing activity in the brain and its modulation by adaptive mechanisms, such as cognitive context, network state, or cellular excitability and synaptic trans...
Gespeichert in:
Veröffentlicht in: | Journal of neurophysiology 2013-04, Vol.109 (7), p.1764-1774 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Variable responses of neuronal networks to repeated sensory or electrical stimuli reflect the interaction of the stimulus' response with ongoing activity in the brain and its modulation by adaptive mechanisms, such as cognitive context, network state, or cellular excitability and synaptic transmission capability. Here, we focus on reliability, length, delays, and variability of evoked responses with respect to their spatial distribution, interaction with spontaneous activity in the networks, and the contribution of GABAergic inhibition. We identified network-intrinsic principles that underlie the formation and modulation of spontaneous activity and stimulus-response relations with the use of state-dependent stimulation in generic neuronal networks in vitro. The duration of spontaneously recurring network-wide bursts of spikes was best predicted by the length of the preceding interval. Length, delay, and structure of responses to identical stimuli systematically depended on stimulus timing and distance to the stimulation site, which were described by a set of simple functions of spontaneous activity. Response length at proximal recording sites increased with the duration of prestimulus inactivity and was best described by a saturation function y(t) = A(1 - e(-αt)). Concomitantly, the delays of polysynaptic late responses at distant sites followed an exponential decay y(t) = Be(-βt) + C. In addition, the speed of propagation was determined by the overall state of the network at the moment of stimulation. Disinhibition increased the number of spikes/network burst and interburst interval length at unchanged gross firing rate, whereas the response modulation by the duration of prestimulus inactivity was preserved. Our data suggest a process of network depression during bursts and subsequent recovery that limit evoked responses following distinct rules. We discuss short-term synaptic depression due to depletion of neurotransmitter vesicles as an underlying mechanism. The seemingly unreliable patterns of spontaneous activity and stimulus-response relations thus follow a predictable structure determined by the interdependencies of network structures and activity states. |
---|---|
ISSN: | 0022-3077 1522-1598 |
DOI: | 10.1152/jn.00481.2012 |