Activation of AMP-Activated Protein Kinase by a Plant-Derived Dihydroisosteviol in Human Intestinal Epithelial Cell
Our previous study has shown that dihydroisosteviol (DHIS), a derivative of stevioside isolated from Stevia rebaudiana (Bertoni), inhibits cystic fibrosis transmembrane conductance regulator (CFTR)-mediated transepithelial chloride secretion across monolayers of human intestinal epithelial (T84) cel...
Gespeichert in:
Veröffentlicht in: | Biological & pharmaceutical bulletin 2013/04/01, Vol.36(4), pp.522-528 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our previous study has shown that dihydroisosteviol (DHIS), a derivative of stevioside isolated from Stevia rebaudiana (Bertoni), inhibits cystic fibrosis transmembrane conductance regulator (CFTR)-mediated transepithelial chloride secretion across monolayers of human intestinal epithelial (T84) cells and prevents cholera toxin-induced intestinal fluid secretion in mouse closed loop models. In this study, we aimed to investigate a mechanism by which DHIS inhibits CFTR activity. Apical chloride current measurements in Fisher rat thyroid cells stably transfected with wild-type human CFTR (FRT-CFTR cells) and T84 cells were used to investigate mechanism of CFTR inhibition by DHIS. In addition, effect of DHIS on AMP-activated protein kinase (AMPK) activation was investigated using Western blot analysis. Surprisingly, it was found that DHIS failed to inhibit CFTR-mediated apical chloride current in FRT-CFTR cells. In contrast, DHIS effectively inhibited CFTR-mediated apical chloride current induced by a cell permeable cAMP analog CPT-cAMP and a direct CFTR activator genistein in T84 cell monolayers. Interestingly, this inhibitory effect of DHIS on CFTR was significantly (p |
---|---|
ISSN: | 0918-6158 1347-5215 |
DOI: | 10.1248/bpb.b12-00711 |