Non-Gaussian non-stationary models for natural hazard modeling

This paper addresses the construction of probabilistic models for time or space dependent natural hazards. The proposed method uses Karhunen-Loève expansion in order to construct an empirical model matching the non-stationarity and the randomness of natural phenomena such as earthquakes or other com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2013-04, Vol.37 (8), p.5938-5950
Hauptverfasser: Poirion, Fabrice, Zentner, Irmela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the construction of probabilistic models for time or space dependent natural hazards. The proposed method uses Karhunen-Loève expansion in order to construct an empirical model matching the non-stationarity and the randomness of natural phenomena such as earthquakes or other complex environmental processes. The terms of the Karhunen-Loève expansion are identified directly from measured data. The approach is illustrated and its performance assessed through two academic examples. It is then applied to seismic ground motion modeling using recorded data.
ISSN:0307-904X
DOI:10.1016/j.apm.2012.11.021