An empirical Bayes approach for analysis of diverse periodic trends in time-course gene expression data

There is a substantial body of works in the biology literature that seeks to characterize the cyclic behavior of genes during cell division. Gene expression microarrays made it possible to measure the expression profiles of thousands of genes simultaneously in time-course experiments to assess chang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2013-01, Vol.29 (2), p.182-188
Hauptverfasser: Kocak, Mehmet, George, E Olusegun, Pyne, Saumyadipta, Pounds, Stanley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a substantial body of works in the biology literature that seeks to characterize the cyclic behavior of genes during cell division. Gene expression microarrays made it possible to measure the expression profiles of thousands of genes simultaneously in time-course experiments to assess changes in the expression levels of genes over time. In this context, the commonly used procedures for testing include the permutation test by de Lichtenberg et al. and the Fisher's G-test, both of which are designed to evaluate periodicity against noise. However, it is possible that a gene of interest may have expression that is neither cyclic nor just noise. Thus, there is a need for a new test for periodicity that can identify cyclic patterns against not only noise but also other non-cyclic patterns such as linear, quadratic or higher order polynomial patterns. To address this weakness, we have introduced an empirical Bayes approach to test for periodicity and compare its performance in terms of sensitivity and specificity with that of the permutation test and Fisher's G-test through extensive simulations and by application to a set of time-course experiments on the Schizosaccharomyces pombe cell-cycle gene expression. We use 'conserved' and 'cycling' genes by Lu et al. to assess the sensitivity and CESR genes by Chenet al. to assess the specificity of our new empirical Bayes method. The SAS Macro for our empirical Bayes test for periodicity is included in the supplementary materials along with a sample run of the MACRO program. mkocak1@uthsc.edu Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1367-4811
1460-2059
DOI:10.1093/bioinformatics/bts672