Global Optimization of Nonlinear Network Design

A novel approach for obtaining globally optimal solutions to design of networks with nonlinear resistances and potential driven flows is proposed. The approach is applicable to networks where the potential loss on an edge in the network is governed by a convex and strictly monotonically increasing f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 2013-01, Vol.23 (1), p.268-295
1. Verfasser: Raghunathan, Arvind U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel approach for obtaining globally optimal solutions to design of networks with nonlinear resistances and potential driven flows is proposed. The approach is applicable to networks where the potential loss on an edge in the network is governed by a convex and strictly monotonically increasing function of flow rate. We introduce a relaxation of the potential loss constraint and formulate the design problem as a mixed-integer nonlinear program. A linearization-based approach with tailored cuts is proposed that improves the computational efficiency over a standard implementation. We have also implemented a simple heuristic approach for finding feasible solutions at the root node and during the search process. The algorithm has been implemented with IBM-ILOG CPLEX and is shown to be computationally effective on a number of examples from the literature. [PUBLICATION ABSTRACT]
ISSN:1052-6234
1095-7189
DOI:10.1137/110827387