Prediction-correction method for optimization of simulated moving bed chromatography

A systematic algorithm for simulated moving bed (SMB) chromatography process development that utilizes dynamic optimization, transient experimental data, and parameter estimation to arrive at optimal operating conditions is described. These operating conditions ensure both high purity constraints an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2013-03, Vol.59 (3), p.736-746
Hauptverfasser: Bentley, Jason, Kawajiri, Yoshiaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A systematic algorithm for simulated moving bed (SMB) chromatography process development that utilizes dynamic optimization, transient experimental data, and parameter estimation to arrive at optimal operating conditions is described. These operating conditions ensure both high purity constraints and optimal productivity are satisfied. This algorithm proceeds until the SMB process is optimized without manual tuning. In a case study, it has been shown with a linear isotherm system that the optimal operating conditions can be reached in only two changes of operating conditions following the proposed algorithm. Another case study with a linear isotherm system has shown that the algorithm is robust to optimize the SMB even if there is significant model mismatch at first. © 2012 American Institute of Chemical Engineers AIChE J, 59: 736–746, 2013
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.13856