Spline interpolation on nonunisolvent sets
Spline interpolation is not always a well-posed problem. The interpolation conditions are sufficient to uniquely determine the interpolant only when the nodes are unisolvent. Examples for which this requirement is not fulfilled are the cases of nodes lying in a straight line, circle, plane, sphere a...
Gespeichert in:
Veröffentlicht in: | IMA journal of numerical analysis 2013-01, Vol.33 (1), p.370-375 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spline interpolation is not always a well-posed problem. The interpolation conditions are sufficient to uniquely determine the interpolant only when the nodes are unisolvent. Examples for which this requirement is not fulfilled are the cases of nodes lying in a straight line, circle, plane, sphere and other quadratic surfaces. In this paper we revisit this problem and present an approach which naturally extends splines to nonunisolvent sets. |
---|---|
ISSN: | 0272-4979 1464-3642 |
DOI: | 10.1093/imanum/drs015 |