Implosion dynamics measurements at the National Ignition Facility

Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1–1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2012-12, Vol.19 (12)
Hauptverfasser: Hicks, D. G., Meezan, N. B., Dewald, E. L., Mackinnon, A. J., Olson, R. E., Callahan, D. A., Döppner, T., Benedetti, L. R., Bradley, D. K., Celliers, P. M., Clark, D. S., Di Nicola, P., Dixit, S. N., Dzenitis, E. G., Eggert, J. E., Farley, D. R., Frenje, J. A., Glenn, S. M., Glenzer, S. H., Hamza, A. V., Heeter, R. F., Holder, J. P., Izumi, N., Kalantar, D. H., Khan, S. F., Kline, J. L., Kroll, J. J., Kyrala, G. A., Ma, T., MacPhee, A. G., McNaney, J. M., Moody, J. D., Moran, M. J., Nathan, B. R., Nikroo, A., Opachich, Y. P., Petrasso, R. D., Prasad, R. R., Ralph, J. E., Robey, H. F., Rinderknecht, H. G., Rygg, J. R., Salmonson, J. D., Schneider, M. B., Simanovskaia, N., Spears, B. K., Tommasini, R., Widmann, K., Zylstra, A. B., Collins, G. W., Landen, O. L., Kilkenny, J. D., Hsing, W. W., MacGowan, B. J., Atherton, L. J., Edwards, M. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1–1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%–70%) of its initial radius, reduced the shell thickness and improved the final fuel ρ R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness were also examined, both of which indicated that instabilities seeded at the ablation front are a significant source of hydrodynamic mix into the central hot spot. Additionally, a direct test of the surrogacy of cryogenic fuel layered versus gas-filled targets was performed. Together all these measurements have established the fundamental ablative-rocket relationship describing the dependence of implosion velocity on fractional ablator mass remaining. This curve shows a lower-than-expected ablator m
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4769268