Reactive self-heating model of aluminum spherical nanoparticles

Aluminum-oxygen reaction is important in highly energetic and high pressure generating systems. Recent experiments with nanostructured thermites suggest that oxidation of aluminum nanoparticles occurs in a few microseconds. Such rapid reaction cannot be explained by a conventional diffusion-based me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2013-02, Vol.102 (5)
Hauptverfasser: Martirosyan, Karen S, Zyskin, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aluminum-oxygen reaction is important in highly energetic and high pressure generating systems. Recent experiments with nanostructured thermites suggest that oxidation of aluminum nanoparticles occurs in a few microseconds. Such rapid reaction cannot be explained by a conventional diffusion-based mechanism. We present a rapid oxidation model of a spherical aluminum nanoparticle, using Cabrera-Mott moving boundary mechanism, and taking self-heating into account. In our model, electric potential solves the nonlinear Poisson equation. In contrast with the Coulomb potential, a “double-layer” type solution for the potential and self-heating leads to enhanced oxidation rates. At maximal reaction temperature of 2000 °C, our model predicts overall oxidation time scale in microseconds range, in agreement with the experimental evidence.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4790823