X-ray diffraction and extended X-ray absorption fine structure study of epitaxial mixed ternary bixbyite PrxY2−xO3 (x = 0–2) films on Si (111)
Ternary single crystalline bixbyite PrxY2−xO3 films over the full stoichiometry range (x = 0–2) have been epitaxially grown on Si (111) with tailored electronic and crystallographic structure. In this work, we present a detailed study of their local atomic environment by extended X-ray absorption fi...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2013-01, Vol.113 (4) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ternary single crystalline bixbyite PrxY2−xO3 films over the full stoichiometry range (x = 0–2) have been epitaxially grown on Si (111) with tailored electronic and crystallographic structure. In this work, we present a detailed study of their local atomic environment by extended X-ray absorption fine structure at both Y K and Pr LIII edges, in combination with complementary high resolution x-ray diffraction measurements. The local structure exhibits systematic variations as a function of the film composition. The cation coordination in the second and third coordination shells changes with composition and is equal to the average concentration, implying that the PrxY2−xO3 films are indeed fully mixed and have a local bixbyite structure with random atomic-scale ordering. A clear deviation from the virtual crystal approximation for the cation-oxygen bond lengths is detected. This demonstrates that the observed Vegard's law for the lattice variation as a function of composition is based microscopically on a more complex scheme related to local structural distortions which accommodate the different cation–oxygen bond lengths. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4788982 |