Donor ionization in size controlled silicon nanocrystals: The transition from defect passivation to free electron generation

We studied the photoluminescence spectra of silicon and phosphorus co-implanted silica thin films on (100) silicon substrates as a function of isothermal annealing time. The rapid phase segregation, formation, and growth dynamics of intrinsic silicon nanocrystals are observed, in the first 600 s of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2013-01, Vol.113 (2)
Hauptverfasser: Crowe, I. F., Papachristodoulou, N., Halsall, M. P., Hylton, N. P., Hulko, O., Knights, A. P., Yang, P., Gwilliam, R. M., Shah, M., Kenyon, A. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We studied the photoluminescence spectra of silicon and phosphorus co-implanted silica thin films on (100) silicon substrates as a function of isothermal annealing time. The rapid phase segregation, formation, and growth dynamics of intrinsic silicon nanocrystals are observed, in the first 600 s of rapid thermal processing, using dark field mode X-TEM. For short annealing times, when the nanocrystal size distribution exhibits a relatively small mean diameter, formation in the presence of phosphorus yields an increase in the luminescence intensity and a blue shift in the emission peak compared with intrinsic nanocrystals. As the mean size increases with annealing time, this enhancement rapidly diminishes and the peak energy shifts further to the red than the intrinsic nanocrystals. These results indicate the existence of competing pathways for the donor electron, which depends strongly on the nanocrystal size. In samples containing a large density of relatively small nanocrystals, the tendency of phosphorus to accumulate at the nanocrystal-oxide interface means that ionization results in a passivation of dangling bond (Pb-centre) type defects, through a charge compensation mechanism. As the size distribution evolves with isothermal annealing, the density of large nanocrystals increases at the expense of smaller nanocrystals, through an Ostwald ripening mechanism, and the majority of phosphorus atoms occupy substitutional lattice sites within the nanocrystals. As a consequence of the smaller band-gap, ionization of phosphorus donors at these sites increases the free carrier concentration and opens up an efficient, non-radiative de-excitation route for photo-generated electrons via Auger recombination. This effect is exacerbated by an enhanced diffusion in phosphorus doped glasses, which accelerates silicon nanocrystal growth.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4772947