Experimental study of nanofiber production through forcespinning

A newly developed method of producing nanofibers, called forcespinning, has proven to be a viable alternative to mass produce nanofibers. Unlike electrospinning, the most common method currently being employed (which draws fibers through the use of electrostatic force), forcespinning utilizes centri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2013-01, Vol.113 (2)
Hauptverfasser: Padron, Simon, Fuentes, Arturo, Caruntu, Dumitru, Lozano, Karen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A newly developed method of producing nanofibers, called forcespinning, has proven to be a viable alternative to mass produce nanofibers. Unlike electrospinning, the most common method currently being employed (which draws fibers through the use of electrostatic force), forcespinning utilizes centrifugal forces which allow for a host of new materials to be processed into nanofibers (given that electric fields are not required) while also providing a significant increase in yield and ease of production. This work presents a detailed explanation of the fiber formation process. The study is conducted using high speed photography to capture the jet initiation process at the orifice and to track the trajectories of the resulting jets. The effects that influential controllable parameters have on the fiber trajectories and final fiber diameters are presented. The forcespinning controllable parameters include the spinneret angular velocity and aspect ratio, orifice radius and orientation, fluid viscoelasticity and surface tension, fluid fill level, solvent evaporation rate, temperature, and distance of spinneret orifice to collector.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4769886