Signal-to-noise performance analysis of streak tube imaging lidar systems. II. Theoretical analysis and discussion
In the preceding paper (referred to here as paper I), we presented a general signal-to-noise performance analysis of a streak tube imaging lidar (STIL) system within the framework of linear cascaded systems theory. A cascaded model is proposed for characterizing the signal-to-noise performance of a...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2012-12, Vol.51 (36), p.8836-8847 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the preceding paper (referred to here as paper I), we presented a general signal-to-noise performance analysis of a streak tube imaging lidar (STIL) system within the framework of linear cascaded systems theory. A cascaded model is proposed for characterizing the signal-to-noise performance of a STIL system with an internal or external intensified streak tube receiver. The STIL system can be decomposed into a series of cascaded imaging chains whose signal and noise transfer properties are described by the general (or the spatial-frequency dependent) noise factors (NFs). Equations for the general NFs of the cascaded chains (or the main components) in the STIL system are derived. This work investigates the signal-to-noise performance of an external intensified STIL system. The implementation of the cascaded model for predicting and evaluating the signal-to-noise performance of the external intensified STIL system is described. Some factors that limit the signal-to-noise performance of the external intensified STIL system are analyzed and discussed. |
---|---|
ISSN: | 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.51.008836 |