Photonic topological insulators

Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal-invariant topological insulators. A remarkable and useful property of these materials is that they support unidirectional spin-polarized propagation at their surfaces. Unfortunat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2013-03, Vol.12 (3), p.233-239
Hauptverfasser: Khanikaev, Alexander B., Hossein Mousavi, S., Tse, Wang-Kong, Kargarian, Mehdi, MacDonald, Allan H., Shvets, Gennady
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal-invariant topological insulators. A remarkable and useful property of these materials is that they support unidirectional spin-polarized propagation at their surfaces. Unfortunately topological insulators are rare among solid-state materials. Using suitably designed electromagnetic media (metamaterials) we theoretically demonstrate a photonic analogue of a topological insulator. We show that metacrystals—superlattices of metamaterials with judiciously designed properties—provide a platform for designing topologically non-trivial photonic states, similar to those that have been identified for condensed-matter topological insulators. The interfaces of the metacrystals support helical edge states that exhibit spin-polarized one-way propagation of photons, robust against disorder. Our results demonstrate the possibility of attaining one-way photon transport without application of external magnetic fields or breaking of time-reversal symmetry. Such spin-polarized one-way transport enables exotic spin-cloaked photon sources that do not obscure each other. Non-trivial topological phases can allow for one-way spin-polarized transport along the interfaces of topological insulators but they are relatively uncommon in the condensed state of matter. By arranging judiciously designed metamaterials into two-dimensional superlattices, a photonic topological insulator has now been demonstrated theoretically, enabling unidirectional spin-polarized photon propagation without the application of external magnetic fields or breaking of time-reversal symmetry.
ISSN:1476-1122
1476-4660
DOI:10.1038/nmat3520