Spectroscopic properties and quantum cutting in Tb3+–Yb3+ co-doped ZrO2 nanocrystals
Ultraviolet-visible to near-infrared quantum cutting (QC) materials are a promising tool to enhance the efficiency of conventional crystalline silicon solar cells. The spectroscopic properties of Tb3+–Yb3+ co-doped ZrO2 nanocrystals are presented, and the QC mechanisms in these nanocrystals are inve...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2013-02, Vol.113 (7) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultraviolet-visible to near-infrared quantum cutting (QC) materials are a promising tool to enhance the efficiency of conventional crystalline silicon solar cells. The spectroscopic properties of Tb3+–Yb3+ co-doped ZrO2 nanocrystals are presented, and the QC mechanisms in these nanocrystals are investigated. The materials were fabricated using the sol gel method and characterized using X-ray powder diffraction, X-ray absorption near edge structure, and luminescence spectroscopy. The incorporation of Yb3+ ions into the host induced a crystalline phase change of ZrO2 from monoclinic to tetragonal to cubic symmetry and influenced the Tb valence state. The Tb3+ visible emission, excitation intensity (monitored by the Tb3+:5D4 emission), decay time of the Tb3+:5D4 emitter level, and down-conversion (DC) emission intensity increased with Yb3+ concentration. Furthermore, a sublinear dependence of the DC intensity on the excitation power at the Tb3+:5D4 level indicated the coexistence of two different QC mechanisms from Tb3+ → Yb3+. The first one is a linear process in which one Tb3+ ion transfers its energy simultaneously to two Yb3+ ions, known as cooperative energy transfer, and the second one is a non-linear process involving an intermediated virtual level in the Tb3+ ion. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4792743 |