Effect of liquid uptake on critical heat flux utilizing a three dimensional, interconnected alumina nano porous surfaces
In this letter, we propose a three dimensional, interconnected alumina nano porous surface (ANPS), which shows significant critical heat flux (CHF) and a reduction of wall superheat. ANPS is versatile in morphology modifications such as thickness and pore diameter and is used to enhance heat transfe...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2012-07, Vol.101 (5), p.54104 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, we propose a three dimensional, interconnected alumina nano porous surface (ANPS), which shows significant critical heat flux (CHF) and a reduction of wall superheat. ANPS is versatile in morphology modifications such as thickness and pore diameter and is used to enhance heat transfer. Structurally well-defined, porous wicks are efficient to absorb and spread liquid into a porous matrix. To characterize various surface wetting environments, synthetic approaches of wetting and liquid absorption have been carried out. We have studied the quantitative evaluation of liquid uptake utilizing electrochemical impedance spectroscopy (EIS). The CHF augment trend is well matched with the amount of liquid absorbed into the porous media, pre-determined by the EIS. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4739946 |