A new conjugate heat transfer method to analyse a 3D steam cooled gas turbine blade with temperature-dependent material properties
The erosion of the hot regions in a gas turbine is one of the most important challenges encountered by the power plants. Though several numerical simulations of the problem have been reported so far, little is known to give accurate results. In this article, the thermoelastic behaviour of a gas turb...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2012-05, Vol.226 (5), p.1309-1320 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The erosion of the hot regions in a gas turbine is one of the most important challenges encountered by the power plants. Though several numerical simulations of the problem have been reported so far, little is known to give accurate results. In this article, the thermoelastic behaviour of a gas turbine blade with internal steam-cooled channels positioned within a three-dimensional cascade configuration has been studied. A computer code based on the conjugate heat transfer method using the simultaneous solution of Navier–Stokes and heat transfer equations has been developed. From this study, the temperature distribution along with the stress values at high temperatures has been obtained. The blade parameters such as E, α, and K were considered to be a function of the temperature. In the previous works, usually only one or two of these parameters was considered as temperature dependent and the others constant. In this article, all the blade parameters, though making the equations highly non-linear, were considered as a function of temperature. The results have been compared with the available experimental data and a good agreement is observed. According to these findings, taking the temperature dependency of materials into account increases the estimations accuracy and brings the results closer to the reality. |
---|---|
ISSN: | 0954-4062 2041-2983 |
DOI: | 10.1177/0954406211418734 |