Modelling and testing of ageing of short fibre reinforced polymer composites

A study in accelerated humidity–temperature ageing and it is numerical modelling for short fibre reinforced polymer composites (SFRPC) based on poly(butylene terephthalate) (PBT) is reported. Authors described experimental results of humidity–temperature ageing of PBT reinforced with glass fibres an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2012-01, Vol.226 (1), p.16-31
Hauptverfasser: Młyniec, A, Uhl, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A study in accelerated humidity–temperature ageing and it is numerical modelling for short fibre reinforced polymer composites (SFRPC) based on poly(butylene terephthalate) (PBT) is reported. Authors described experimental results of humidity–temperature ageing of PBT reinforced with glass fibres and proposed a novel computation method of strength and durability analysis for SFRPC parts. Experimental results showed different ageing behaviours, which depend on fibre alignment, e.g. a decrease of Young’s modulus in longitudinal fibre alignment in tension after ageing, an increase of Young’s modulus in transverse direction in tension after ageing, and the increase of the shear modulus and decrease of shear strength after ageing in both directions. Proposed modelling procedure takes the fibre orientation from mould filling analysis as an independent material orientation, using a developed ageing dependent material model, based on tensile, compressive, and shear properties for longitudinal and transverse fibre alignments, and calculates failure criteria as a function of the ageing time and fibre alignment. An innovative approach is to create a fibre alignment dependent material ageing model which takes into account changes of material properties depending on the direction of the reinforcement. This methodology was extended to arbitrary models and validated on real parts made of SFRPC.
ISSN:0954-4062
2041-2983
DOI:10.1177/0954406211411552