Control of misfit dislocation glide plane distribution during strain relaxation of CuPt-ordered GaInAs and GaInP
We show a strong relationship between CuPt atomic ordering and misfit dislocation glide plane preference during strain relaxation. A miscut substrate creates an asymmetry in the resolved mismatch stress between {111} glide planes, causing a preference for one glide plane that results in a systematic...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Physics 2012-07, Vol.112 (2) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show a strong relationship between CuPt atomic ordering and misfit dislocation glide plane preference during strain relaxation. A miscut substrate creates an asymmetry in the resolved mismatch stress between {111} glide planes, causing a preference for one glide plane that results in a systematic tilt of the epilayer relative to the substrate. However, a small degree of ordering leads to nearly 100% of dislocation glide on planes opposite to the expected planes from the substrate miscut. This result is explained as a consequence of the asymmetry between {111} glide planes of CuPt-ordered material. Lowering the ordering parameter by changing bulk composition results in a change in glide plane distribution and is accomplished through the formation of new dislocations. Control of the glide plane distribution is therefore possible by controlling the ordering parameter on a vicinal substrate. Knowledge and control of this relaxation mechanism is important for the reduction of threading dislocations in lattice-mismatched devices. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4739725 |