A class of quasi-variational inequalities for adaptive image denoising and decomposition

We introduce a class of adaptive non-smooth convex variational problems for image denoising in terms of a common data fitting term and a support functional as regularizer. Adaptivity is modeled by a set-valued mapping with closed, compact and convex values, that defines and steers the regularizer de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2013-03, Vol.54 (2), p.371-398
Hauptverfasser: Lenzen, Frank, Becker, Florian, Lellmann, Jan, Petra, Stefania, Schnörr, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a class of adaptive non-smooth convex variational problems for image denoising in terms of a common data fitting term and a support functional as regularizer. Adaptivity is modeled by a set-valued mapping with closed, compact and convex values, that defines and steers the regularizer depending on the variational solution. This extension gives rise to a class of quasi-variational inequalities. We provide sufficient conditions for the existence of fixed points as solutions, and an algorithm based on solving a sequence of variational problems. Denoising experiments with spatial and spatio-temporal image data and an adaptive total variation regularizer illustrate our approach.
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-012-9456-0