New infrared bands of nonpolar OCS dimer and experimental frequencies for two intermolecular modes
Spectra of the nonpolar carbonyl sulfide dimer in the region of the OCS ν(1) fundamental band were observed in a slit-jet supersonic expansion. The jet was probed using radiation from a tunable diode laser employed in a rapid-scan signal averaging mode. Six new bands were observed and analyzed, all...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2012-08, Vol.137 (5), p.054304-054304 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spectra of the nonpolar carbonyl sulfide dimer in the region of the OCS ν(1) fundamental band were observed in a slit-jet supersonic expansion. The jet was probed using radiation from a tunable diode laser employed in a rapid-scan signal averaging mode. Six new bands were observed and analyzed, all of which originate from the dimer ground vibrational state. Three were vibrational fundamentals involving the ((18)OCS)(2) and (16)OCS-(18)OCS isotopologues. They enabled an estimate to be made of the frequency of the infrared-forbidden mode corresponding to in-phase vibration of the OCS monomers in the dimer, a value needed to obtain an intermolecular vibrational frequency from one of the observed combination bands. A relatively weak b-type dimer band centered at 2103.105 cm(-1) was assigned to the OCS 4ν(2) (l = 0) bending overtone. Combination bands were observed involving the geared bend and van der Waals stretch intermolecular modes. The resulting experimental frequencies of 37.5(20) cm(-1) for the bend and 42.9727(1) cm(-1) for the stretch are in good agreement with a recent high level theoretical calculation. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4739465 |