Yang-Lee zeros and the critical behavior of the infinite-range two- and three-state Potts models

The phase diagram of the two- and three-state Potts model with infinite-range interactions in the external field is analyzed by studying the partition function zeros in the complex field plane. The tricritical point of the three-state model is observed as the approach of the zeros to the real axis a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2013-02, Vol.87 (2), p.022140-022140, Article 022140
Hauptverfasser: Glumac, Zvonko, Uzelac, Katarina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The phase diagram of the two- and three-state Potts model with infinite-range interactions in the external field is analyzed by studying the partition function zeros in the complex field plane. The tricritical point of the three-state model is observed as the approach of the zeros to the real axis at the nonzero field value. Different regimes, involving several first- and second-order transitions of the complicated phase diagram of the three-state model, are identified from the scaling properties of the zeros closest to the real axis. The critical exponents related to the tricritical point and the Yang-Lee edge singularity are well reproduced. Calculations are extended to the negative fields, where the exact implicit expression for the transition line is derived.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.87.022140