THE MULTIVARIATE supOU STOCHASTIC VOLATILITY MODEL

Using positive semidefinite supOU (superposition of Ornstein–Uhlenbeck type) processes to describe the volatility, we introduce a multivariate stochastic volatility model for financial data which is capable of modeling long range dependence effects. The finiteness of moments and the second‐order str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical finance 2013-04, Vol.23 (2), p.275-296
Hauptverfasser: Barndorff-Nielsen, Ole Eiler, Stelzer, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using positive semidefinite supOU (superposition of Ornstein–Uhlenbeck type) processes to describe the volatility, we introduce a multivariate stochastic volatility model for financial data which is capable of modeling long range dependence effects. The finiteness of moments and the second‐order structure of the volatility, the log‐ returns, as well as their “squares” are discussed in detail. Moreover, we give several examples in which long memory effects occur and study how the model as well as the simple Ornstein–Uhlenbeck type stochastic volatility model behave under linear transformations. In particular, the models are shown to be preserved under invertible linear transformations. Finally, we discuss how (sup)OU stochastic volatility models can be combined with a factor modeling approach.
ISSN:0960-1627
1467-9965
DOI:10.1111/j.1467-9965.2011.00494.x