Tr-cp 14 cysteine protease in white clover (Trifolium repens) is localized to the endoplasmic reticulum and is associated with programmed cell death during development of tracheary elements

Cysteine proteases are known to be associated with programmed cell death, developmental senescence and some types of pathogen and stress-induced responses. In the present study, we have characterized the cysteine protease Tr-cp 14 in white clover (Trifolium repens). Tr-cp 14 belongs to the C1A famil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protoplasma 2013-04, Vol.250 (2), p.623-629
Hauptverfasser: Mulisch, Maria, Asp, Torben, Krupinska, Karin, Hollmann, Julien, Holm, Preben Bach
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cysteine proteases are known to be associated with programmed cell death, developmental senescence and some types of pathogen and stress-induced responses. In the present study, we have characterized the cysteine protease Tr-cp 14 in white clover (Trifolium repens). Tr-cp 14 belongs to the C1A family of cysteine proteases with homology to XCP1 and XCP2 from Arabidopsis thaliana and p48h-17 from Zinnia elegans, which previously have been reported to be associated with tracheary element differentiation. The proform as well as the processed form of the protein was detected in petioles, flowers and leaves, but the processed form was more abundant in leaves and petioles than in flowers. The Tr-cp 14 protein was localized to differentiating tracheary elements within the xylem, indicating that the cysteine protease is involved in protein re-mobilization during tracheary element differentiation. Immunogold studies suggest that the protease prior to the burst of the vacuole was associated to the ER cisternae. After disruption of the tonoplast, it was found in the cytoplasm, and, in later stages, associated with disintegrating material dispersed throughout the cell.
ISSN:0033-183X
1615-6102
DOI:10.1007/s00709-012-0427-1