1980–2010 Variability in U.K. Surface Wind Climate

The climate of the northeast Atlantic region comprises substantial decadal variability in storminess. It also exhibits strong inter- and intra-annual variability in extreme high and low wind speed episodes. Here the authors quantify and discuss causes of the variability seen in the U.K. wind climate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2013-02, Vol.26 (4), p.1172-1191
Hauptverfasser: Earl, Nick, Dorling, Steve, Hewston, Richard, von Glasow, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The climate of the northeast Atlantic region comprises substantial decadal variability in storminess. It also exhibits strong inter- and intra-annual variability in extreme high and low wind speed episodes. Here the authors quantify and discuss causes of the variability seen in the U.K. wind climate over the recent period 1980–2010. Variations in U.K. hourly mean (HM) wind speeds, in daily maximum gust speeds and in associated wind direction measurements, made at standard 10-m height and recorded across a network of 40 stations, are considered. The Weibull distribution is shown to generally provide a good fit to the hourly wind data, albeit with the shape parameterkspatially varying from 1.4 to 2.1, highlighting that the commonly assumedk= 2 Rayleigh distribution is not universal. It is found that the 10th and 50th percentile HM wind speeds have declined significantly over this specific period, while still incorporating a peak in the early 1990s. The authors’ analyses place the particularly ‘‘low wind’’ year of 2010 into longer-term context and their findings are compared with other recent international studies. Wind variability is also quantified and discussed in terms of variations in the exceedance of key wind speed thresholds of relevance to the insurance and wind energy industries. Associated interannual variability in energy density and potential wind power output of the order of ±20% around the mean is revealed. While 40% of network average winds are in the southwest quadrant, 51% of energy in the wind is associated with this sector. The findings are discussed in the context of current existing challenges to improve predictability in the Euro-Atlantic sector over all time scales.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI-D-12-00026.1