Comparison of Channeling Contrast between Ion and Electron Images
Ion channeling contrast (iCC) and electron channeling contrast (eCC) are caused by variation in signal resulting from changes in the angle of the incident beam and the crystal lattice with respect to the target. iCC is directly influenced by the incident ion range in crystalline materials. The ion r...
Gespeichert in:
Veröffentlicht in: | Microscopy and microanalysis 2013-04, Vol.19 (2), p.344-349 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ion channeling contrast (iCC) and electron channeling contrast (eCC) are caused by variation in signal resulting from changes in the angle of the incident beam and the crystal lattice with respect to the target. iCC is directly influenced by the incident ion range in crystalline materials. The ion range is larger for low-index crystal orientated grains, resulting in the emission of fewer secondary electrons at the surface yielding a lower signal. Ions are stopped closer to the surface for off-axis grains, resulting in the emission of many secondary electrons yielding a higher signal. Conversely, backscattered electrons (BSEs) are the primary contribution to eCC. BSEs are diffracted or channeled to form an electron channeling pattern (ECP). The BSE emission of the ECP peaks when the electron beam is normal to the surface of an on-axis grain, and therefore a bright signal is observed. Thus, iCC and eCC images yield inverse contrast behavior for on-axis oriented grains. Since there is a critical angle associated with particle channeling, accurately determining grain boundary locations require the acquisition of multiple images obtained at different tilt conditions. |
---|---|
ISSN: | 1431-9276 1435-8115 |
DOI: | 10.1017/S1431927612014286 |