Resolution of oligomeric species during the aggregation of Aβ1-40 using (19)F NMR
In the commonly used nucleation-dependent model of protein aggregation, aggregation proceeds only after a lag phase in which the concentration of energetically unfavorable nuclei reaches a critical value. The formation of oligomeric species prior to aggregation can be difficult to detect by current...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2013-03, Vol.52 (11), p.1903 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the commonly used nucleation-dependent model of protein aggregation, aggregation proceeds only after a lag phase in which the concentration of energetically unfavorable nuclei reaches a critical value. The formation of oligomeric species prior to aggregation can be difficult to detect by current spectroscopic techniques. By using real-time (19)F NMR along with other techniques, we are able to show that multiple oligomeric species can be detected during the lag phase of Aβ1-40 fiber formation, consistent with a complex mechanism of aggregation. At least six types of oligomers can be detected by (19)F NMR. These include the reversible formation of large β-sheet oligomer immediately after solubilization at high peptide concentration, a small oligomer that forms transiently during the early stages of the lag phase, and four spectroscopically distinct forms of oligomers with molecular weights between ∼30 and 100 kDa that appear during the later stages of aggregation. The ability to resolve individual oligomers and track their formation in real-time should prove fruitful in understanding the aggregation of amyloidogenic proteins and in isolating potentially toxic nonamyloid oligomers. |
---|---|
ISSN: | 1520-4995 1520-4995 |
DOI: | 10.1021/bi400027y |