Drug target central

Background: One of the primary pillars of drug discovery is the drug target, its relationship to both the drugs designed against it and the biological processes in which it is involved. Here we review the informatics approaches required to build a complete catalogue of known drug targets. Objective:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert opinion on drug discovery 2009-08, Vol.4 (8), p.857-872
Hauptverfasser: Harland, Lee, Gaulton, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: One of the primary pillars of drug discovery is the drug target, its relationship to both the drugs designed against it and the biological processes in which it is involved. Here we review the informatics approaches required to build a complete catalogue of known drug targets. Objective: Using Pfizer's internal target database as a narrative, we review the steps involved in the construction of an integrated, enterprise target-informatics system. We consider how compiling the drug target universe requires integration across several resources such as competitor intelligence and pharmacological activity databases, as well as input from techniques such as text-mining. In particular, we address data standards and the complexities of representing targets in a structured ontology as well as opportunities for future development. Conclusion: Drug target-orientated databases address important areas of drug discovery such as chemogenomics, drug/candidate repurposing and business intelligence. As research in industry and academia drives continued expansion of the druggable genome, it is crucial that such systems be maintained to provide an accurate picture of the landscape. This power of this information stretches beyond drug discovery and into the wider scientific community where small molecule tool compounds can enable the dissection of complex cellular pathways.
ISSN:1746-0441
1746-045X
DOI:10.1517/17460440903049290