Novel Cationic Quinazolin-4(3H)-one Conjugated Fullerene Nanoparticles as Antimycobacterial and Antimicrobial Agents

A series of novel cationic fullerene derivatives bearing a substituted‐quinazolin‐4(3H)‐one moiety as a side arm were synthesized using the 1,3‐dipolar cycloaddition reaction of C60 with azomethine ylides generated from the corresponding Schiff bases of substituted quinazolinones. The synthesized co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Pharmazie (Weinheim) 2013-03, Vol.346 (3), p.210-220
Hauptverfasser: Patel, Manishkumar B., Harikrishnan, Uma, Valand, Nikunj N., Modi, Nishith R., Menon, Shobhana K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of novel cationic fullerene derivatives bearing a substituted‐quinazolin‐4(3H)‐one moiety as a side arm were synthesized using the 1,3‐dipolar cycloaddition reaction of C60 with azomethine ylides generated from the corresponding Schiff bases of substituted quinazolinones. The synthesized compounds 5a–f were characterized by elemental analysis, FT‐IR, 1H NMR, 13C NMR, and ESI‐MS and screened for their antibacterial activity against Mycobacterium tuberculosis (H37RV) and antimicrobial activity against selected Gram‐positive (Staphylococcus aureus and S. pyogenes) and Gram‐negative (Pseudomonas aeruginosa, Klebsiella pneumonia and Escherichia coli) bacterial and fungal strains (Candida albicans, Aspergillus clavatus, and A. niger), respectively. All the compounds exhibited significant activity, with the most effective compounds having MIC values and zones of inhibition comparable to those of standard drugs. Novel cationic fullerene derivatives bearing a substituted‐quinazolin‐4(3H)‐one moiety as a side arm were synthesized using the 1,3‐dipolar cycloaddition reaction of C60 with azomethine ylides generated from the corresponding Schiff bases of substituted quinazolinones. Compounds 5a–f exhibited significant antibacterial and antimicrobial activity, with the most effective compounds having MIC values and zones of inhibition comparable to those of standard drugs.
ISSN:0365-6233
1521-4184
DOI:10.1002/ardp.201200371