Effect of Electrode Materials on AlN-Based Bipolar and Complementary Resistive Switching

We report the complementary resistive switching (CRS) behaviors in aluminum nitride (AlN)-based memory devices as the promising new material system for large-scale integration of passive crossbar arrays. By utilizing different electrodes (Cu, Pt, and TiN), CRS characteristics are demonstrated in bot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2013-03, Vol.5 (5), p.1793-1799
Hauptverfasser: Chen, Chao, Gao, Shuang, Tang, Guangsheng, Fu, Huadong, Wang, Guangyue, Song, Cheng, Zeng, Fei, Pan, Feng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the complementary resistive switching (CRS) behaviors in aluminum nitride (AlN)-based memory devices as the promising new material system for large-scale integration of passive crossbar arrays. By utilizing different electrodes (Cu, Pt, and TiN), CRS characteristics are demonstrated in both TiN/AlN/Cu/AlN/TiN electrochemical metallization cells and Pt/AlN/TiN/AlN/Pt ionic resistive switching systems. The instability of Pt/AlN/Cu/AlN/Pt based CRS is explained by the relatively small reset voltage caused by the thermal effects enhanced reset process in the corresponding bipolar resistive switching element. It is concluded that the prerequisite for reliable and stable CRS is that the reset voltage of the bipolar resistive switching element must be much larger than half of the set voltage.
ISSN:1944-8244
1944-8252
DOI:10.1021/am303128h