Decay of Batchelor and Saffman rotating turbulence
The decay rate of isotropic and homogeneous turbulence is known to be affected by the large-scale spectrum of the initial perturbations, associated with at least two canonical self-preserving solutions of the von Kármán-Howarth equation: the so-called Batchelor and Saffman spectra. The effect of lon...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2012-12, Vol.86 (6 Pt 2), p.066320-066320, Article 066320 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The decay rate of isotropic and homogeneous turbulence is known to be affected by the large-scale spectrum of the initial perturbations, associated with at least two canonical self-preserving solutions of the von Kármán-Howarth equation: the so-called Batchelor and Saffman spectra. The effect of long-range correlations in the decay of anisotropic flows is less clear, and recently it has been proposed that the decay rate of rotating turbulence may be independent of the large-scale spectrum of the initial perturbations. We analyze numerical simulations of freely decaying rotating turbulence with initial energy spectra ∼k^{4} (Batchelor turbulence) and ∼k^{2} (Saffman turbulence) and show that, while a self-similar decay can not be identified for the total energy, the decay is indeed affected by long-range correlations. The decay of two- and three-dimensional modes follows distinct power laws in each case, which are consistent with predictions derived from the anisotropic von Kármán-Howarth equation, and with conservation of anisotropic integral quantities by the flow evolution. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/physreve.86.066320 |