Identification of ARMA models using intermittent and quantized output observations
This paper studies system identification of ARMA models whose outputs are subject to finite-level quantization and random packet dropouts. Using the maximum likelihood criterion, we propose a recursive identification algorithm, which we show to be strongly consistent and asymptotically normal. We al...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2013-02, Vol.49 (2), p.360-369 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies system identification of ARMA models whose outputs are subject to finite-level quantization and random packet dropouts. Using the maximum likelihood criterion, we propose a recursive identification algorithm, which we show to be strongly consistent and asymptotically normal. We also propose a simple adaptive quantization scheme, which asymptotically achieves the minimum parameter estimation error covariance. The joint effect of finite-level quantization and random packet dropouts on identification accuracy are exactly quantified. The theoretical results are verified by simulations. |
---|---|
ISSN: | 0005-1098 1873-2836 |
DOI: | 10.1016/j.automatica.2012.11.020 |