Identification of ARMA models using intermittent and quantized output observations

This paper studies system identification of ARMA models whose outputs are subject to finite-level quantization and random packet dropouts. Using the maximum likelihood criterion, we propose a recursive identification algorithm, which we show to be strongly consistent and asymptotically normal. We al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2013-02, Vol.49 (2), p.360-369
Hauptverfasser: Marelli, Damián, You, Keyou, Fu, Minyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies system identification of ARMA models whose outputs are subject to finite-level quantization and random packet dropouts. Using the maximum likelihood criterion, we propose a recursive identification algorithm, which we show to be strongly consistent and asymptotically normal. We also propose a simple adaptive quantization scheme, which asymptotically achieves the minimum parameter estimation error covariance. The joint effect of finite-level quantization and random packet dropouts on identification accuracy are exactly quantified. The theoretical results are verified by simulations.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2012.11.020