Biharmonic ideal hypersurfaces in Euclidean spaces
Let x:M→Em be an isometric immersion from a Riemannian n-manifold into a Euclidean m-space. Denote by Δ and x→ the Laplace operator and the position vector of M, respectively. Then M is called biharmonic if Δ2x→=0. The following Chenʼs Biharmonic Conjecture made in 1991 is well-known and stays open:...
Gespeichert in:
Veröffentlicht in: | Differential geometry and its applications 2013-02, Vol.31 (1), p.1-16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let x:M→Em be an isometric immersion from a Riemannian n-manifold into a Euclidean m-space. Denote by Δ and x→ the Laplace operator and the position vector of M, respectively. Then M is called biharmonic if Δ2x→=0. The following Chenʼs Biharmonic Conjecture made in 1991 is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper we prove that the biharmonic conjecture is true for δ(2)-ideal and δ(3)-ideal hypersurfaces of a Euclidean space of arbitrary dimension. |
---|---|
ISSN: | 0926-2245 1872-6984 |
DOI: | 10.1016/j.difgeo.2012.10.008 |