Biharmonic ideal hypersurfaces in Euclidean spaces

Let x:M→Em be an isometric immersion from a Riemannian n-manifold into a Euclidean m-space. Denote by Δ and x→ the Laplace operator and the position vector of M, respectively. Then M is called biharmonic if Δ2x→=0. The following Chenʼs Biharmonic Conjecture made in 1991 is well-known and stays open:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential geometry and its applications 2013-02, Vol.31 (1), p.1-16
Hauptverfasser: Chen, Bang-Yen, Munteanu, Marian Ioan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let x:M→Em be an isometric immersion from a Riemannian n-manifold into a Euclidean m-space. Denote by Δ and x→ the Laplace operator and the position vector of M, respectively. Then M is called biharmonic if Δ2x→=0. The following Chenʼs Biharmonic Conjecture made in 1991 is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper we prove that the biharmonic conjecture is true for δ(2)-ideal and δ(3)-ideal hypersurfaces of a Euclidean space of arbitrary dimension.
ISSN:0926-2245
1872-6984
DOI:10.1016/j.difgeo.2012.10.008