Estimates for wave and Klein-Gordon equations on modulation spaces
We prove that the fundamental semi-group e^it(m^2│△│)^1/2 (m≠ 0) of the Klein-Gordon equation is bounded on the modulation space M^8p,q(R^n) for all 0 〈 p, q ≤∞ and s ∈ R. Similarly, we prove that the wave semi-group e^it│△│^1/2 is bounded on the Hardy type modulation spaces μ^εp,q(R^n) for all 0 〈...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2012-10, Vol.55 (10), p.2109-2123 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the fundamental semi-group e^it(m^2│△│)^1/2 (m≠ 0) of the Klein-Gordon equation is bounded on the modulation space M^8p,q(R^n) for all 0 〈 p, q ≤∞ and s ∈ R. Similarly, we prove that the wave semi-group e^it│△│^1/2 is bounded on the Hardy type modulation spaces μ^εp,q(R^n) for all 0 〈 p, q ≤ ∞, and s ∈R. All the bounds have an asymptotic factor t^n│1/p-1/2│ as t goes to the infinity. These results extend some known results for the case of p ≥ 1. Also, some applications for the Cauchy problems related to the semi-group eit(m^2I+│△│)1/2 are obtained. Finally we discuss the optimum of the factor t^n│1/p-1/2│ and raise some unsolved problems. |
---|---|
ISSN: | 1674-7283 1006-9283 1869-1862 |
DOI: | 10.1007/s11425-012-4509-5 |