Application of Microwave Photoconductivity Decay Method to Characterization of Amorphous In-Ga-Zn-O Films
Microwave photoconductivity decay (µ-PCD) method was applied to evaluate the effects of chemical composition and Ar+ plasma induced damage on the bulk and the surface states in amorphous In-Ga-Zn-O (a-IGZO) films. It was found that the peak reflectivity signal in the photoconductivity response incre...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Electronics 2012/11/01, Vol.E95.C(11), pp.1724-1729 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microwave photoconductivity decay (µ-PCD) method was applied to evaluate the effects of chemical composition and Ar+ plasma induced damage on the bulk and the surface states in amorphous In-Ga-Zn-O (a-IGZO) films. It was found that the peak reflectivity signal in the photoconductivity response increased with decreasing the Ga content, and had a strong correlation with the a-IGZO transistor performances. In addition, the peak reflectivity signals obtained after various Ar+ plasma treatment duration were well correlated with the transistor characteristics. With Ar+ plasma treatment, the peak reflectivity signal decreased in accordance with degradation of transistor characteristics. The µ-PCD method was found to be a very useful tool not only to evaluate the bulk and the surface states, but also to predict the performance of a-IGZO transistors subjected to various plasma processes in the production. |
---|---|
ISSN: | 0916-8524 1745-1353 |
DOI: | 10.1587/transele.E95.C.1724 |