Defuzzification block: New algorithms, and efficient hardware and software implementation issues

The defuzzification is a critical block when implementing a fuzzy inference engine due to different variations and also high computational power demands of defuzzification algorithms. These various methods stand for different cost-accuracy trade-off points. Three new implementation friendly defuzzif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence 2013-01, Vol.26 (1), p.162-172
Hauptverfasser: Mahdiani, H.R., Banaiyan, A., Haji Seyed Javadi, M., Fakhraie, S.M., Lucas, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue 1
container_start_page 162
container_title Engineering applications of artificial intelligence
container_volume 26
creator Mahdiani, H.R.
Banaiyan, A.
Haji Seyed Javadi, M.
Fakhraie, S.M.
Lucas, C.
description The defuzzification is a critical block when implementing a fuzzy inference engine due to different variations and also high computational power demands of defuzzification algorithms. These various methods stand for different cost-accuracy trade-off points. Three new implementation friendly defuzzification algorithms are presented in this paper and compared with a complete set of existing defuzzification methods. Some accuracy analysis simulation results and analytic studies are provided to demonstrate that these methods provide acceptable precision with respect to other existing methods. The software models of the proposed and exiting defuzzification methods are developed under three well-known platforms, Intel's Pentium IV, IBM's PowerPC, and TI's C62 DSP to show that new methods gain much lower execution-time and instruction-count with respect to the most common existing methods. The hardware models of all these methods are also developed and synthesized to demonstrate the superiority of the new methods in terms of area, delay, and power consumption with respect to other methods when implemented in hardware.
doi_str_mv 10.1016/j.engappai.2012.07.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1315644427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0952197612001601</els_id><sourcerecordid>1315644427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-e0e0625abf6d7bd0b7e23a96d2435abb76e7c569338002e409743414954c388b3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCyhLFiSMY8dOWIHKU6pgA2vjOJPWJS_slIp-PSmBNavRzNx7R3MIOaUQUaDiYhVhs9Bdp20UA40jkBEA3SMTmkoWCimyfTKBLIlDmklxSI68XwEAS7mYkLcbLNfbrS2t0b1tmyCvWvN-GTzhJtDVonW2X9b-PNBNEWA5qCw2fbDUrthohz9j35b9T2PrrsJ62I9J1vs1-mNyUOrK48lvnZLXu9uX2UM4f75_nF3PQ8N40ocICCJOdF6KQuYF5BJjpjNRxJwN01wKlCYRGWMpQIwcMskZpzxLuGFpmrMpORtzO9d-DHd7VVtvsKp0g-3aK8poIjjnsRykYpQa13rvsFSds7V2X4qC2iFVK_WHVO2QKpBqQDoYr0YjDo98WnTK73gYLKxD06uitf9FfAO384Ps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315644427</pqid></control><display><type>article</type><title>Defuzzification block: New algorithms, and efficient hardware and software implementation issues</title><source>Elsevier ScienceDirect Journals</source><creator>Mahdiani, H.R. ; Banaiyan, A. ; Haji Seyed Javadi, M. ; Fakhraie, S.M. ; Lucas, C.</creator><creatorcontrib>Mahdiani, H.R. ; Banaiyan, A. ; Haji Seyed Javadi, M. ; Fakhraie, S.M. ; Lucas, C.</creatorcontrib><description>The defuzzification is a critical block when implementing a fuzzy inference engine due to different variations and also high computational power demands of defuzzification algorithms. These various methods stand for different cost-accuracy trade-off points. Three new implementation friendly defuzzification algorithms are presented in this paper and compared with a complete set of existing defuzzification methods. Some accuracy analysis simulation results and analytic studies are provided to demonstrate that these methods provide acceptable precision with respect to other existing methods. The software models of the proposed and exiting defuzzification methods are developed under three well-known platforms, Intel's Pentium IV, IBM's PowerPC, and TI's C62 DSP to show that new methods gain much lower execution-time and instruction-count with respect to the most common existing methods. The hardware models of all these methods are also developed and synthesized to demonstrate the superiority of the new methods in terms of area, delay, and power consumption with respect to other methods when implemented in hardware.</description><identifier>ISSN: 0952-1976</identifier><identifier>EISSN: 1873-6769</identifier><identifier>DOI: 10.1016/j.engappai.2012.07.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Computer programs ; Defuzzification ; Digital signal processing ; Engine blocks ; Fuzzy ; Fuzzy control ; Fuzzy hardware ; Fuzzy software ; Hardware ; Mathematical models ; Software ; VLSI</subject><ispartof>Engineering applications of artificial intelligence, 2013-01, Vol.26 (1), p.162-172</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-e0e0625abf6d7bd0b7e23a96d2435abb76e7c569338002e409743414954c388b3</citedby><cites>FETCH-LOGICAL-c345t-e0e0625abf6d7bd0b7e23a96d2435abb76e7c569338002e409743414954c388b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0952197612001601$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mahdiani, H.R.</creatorcontrib><creatorcontrib>Banaiyan, A.</creatorcontrib><creatorcontrib>Haji Seyed Javadi, M.</creatorcontrib><creatorcontrib>Fakhraie, S.M.</creatorcontrib><creatorcontrib>Lucas, C.</creatorcontrib><title>Defuzzification block: New algorithms, and efficient hardware and software implementation issues</title><title>Engineering applications of artificial intelligence</title><description>The defuzzification is a critical block when implementing a fuzzy inference engine due to different variations and also high computational power demands of defuzzification algorithms. These various methods stand for different cost-accuracy trade-off points. Three new implementation friendly defuzzification algorithms are presented in this paper and compared with a complete set of existing defuzzification methods. Some accuracy analysis simulation results and analytic studies are provided to demonstrate that these methods provide acceptable precision with respect to other existing methods. The software models of the proposed and exiting defuzzification methods are developed under three well-known platforms, Intel's Pentium IV, IBM's PowerPC, and TI's C62 DSP to show that new methods gain much lower execution-time and instruction-count with respect to the most common existing methods. The hardware models of all these methods are also developed and synthesized to demonstrate the superiority of the new methods in terms of area, delay, and power consumption with respect to other methods when implemented in hardware.</description><subject>Algorithms</subject><subject>Computer programs</subject><subject>Defuzzification</subject><subject>Digital signal processing</subject><subject>Engine blocks</subject><subject>Fuzzy</subject><subject>Fuzzy control</subject><subject>Fuzzy hardware</subject><subject>Fuzzy software</subject><subject>Hardware</subject><subject>Mathematical models</subject><subject>Software</subject><subject>VLSI</subject><issn>0952-1976</issn><issn>1873-6769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCyhLFiSMY8dOWIHKU6pgA2vjOJPWJS_slIp-PSmBNavRzNx7R3MIOaUQUaDiYhVhs9Bdp20UA40jkBEA3SMTmkoWCimyfTKBLIlDmklxSI68XwEAS7mYkLcbLNfbrS2t0b1tmyCvWvN-GTzhJtDVonW2X9b-PNBNEWA5qCw2fbDUrthohz9j35b9T2PrrsJ62I9J1vs1-mNyUOrK48lvnZLXu9uX2UM4f75_nF3PQ8N40ocICCJOdF6KQuYF5BJjpjNRxJwN01wKlCYRGWMpQIwcMskZpzxLuGFpmrMpORtzO9d-DHd7VVtvsKp0g-3aK8poIjjnsRykYpQa13rvsFSds7V2X4qC2iFVK_WHVO2QKpBqQDoYr0YjDo98WnTK73gYLKxD06uitf9FfAO384Ps</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Mahdiani, H.R.</creator><creator>Banaiyan, A.</creator><creator>Haji Seyed Javadi, M.</creator><creator>Fakhraie, S.M.</creator><creator>Lucas, C.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Defuzzification block: New algorithms, and efficient hardware and software implementation issues</title><author>Mahdiani, H.R. ; Banaiyan, A. ; Haji Seyed Javadi, M. ; Fakhraie, S.M. ; Lucas, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-e0e0625abf6d7bd0b7e23a96d2435abb76e7c569338002e409743414954c388b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Computer programs</topic><topic>Defuzzification</topic><topic>Digital signal processing</topic><topic>Engine blocks</topic><topic>Fuzzy</topic><topic>Fuzzy control</topic><topic>Fuzzy hardware</topic><topic>Fuzzy software</topic><topic>Hardware</topic><topic>Mathematical models</topic><topic>Software</topic><topic>VLSI</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahdiani, H.R.</creatorcontrib><creatorcontrib>Banaiyan, A.</creatorcontrib><creatorcontrib>Haji Seyed Javadi, M.</creatorcontrib><creatorcontrib>Fakhraie, S.M.</creatorcontrib><creatorcontrib>Lucas, C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering applications of artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahdiani, H.R.</au><au>Banaiyan, A.</au><au>Haji Seyed Javadi, M.</au><au>Fakhraie, S.M.</au><au>Lucas, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defuzzification block: New algorithms, and efficient hardware and software implementation issues</atitle><jtitle>Engineering applications of artificial intelligence</jtitle><date>2013-01</date><risdate>2013</risdate><volume>26</volume><issue>1</issue><spage>162</spage><epage>172</epage><pages>162-172</pages><issn>0952-1976</issn><eissn>1873-6769</eissn><abstract>The defuzzification is a critical block when implementing a fuzzy inference engine due to different variations and also high computational power demands of defuzzification algorithms. These various methods stand for different cost-accuracy trade-off points. Three new implementation friendly defuzzification algorithms are presented in this paper and compared with a complete set of existing defuzzification methods. Some accuracy analysis simulation results and analytic studies are provided to demonstrate that these methods provide acceptable precision with respect to other existing methods. The software models of the proposed and exiting defuzzification methods are developed under three well-known platforms, Intel's Pentium IV, IBM's PowerPC, and TI's C62 DSP to show that new methods gain much lower execution-time and instruction-count with respect to the most common existing methods. The hardware models of all these methods are also developed and synthesized to demonstrate the superiority of the new methods in terms of area, delay, and power consumption with respect to other methods when implemented in hardware.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engappai.2012.07.001</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0952-1976
ispartof Engineering applications of artificial intelligence, 2013-01, Vol.26 (1), p.162-172
issn 0952-1976
1873-6769
language eng
recordid cdi_proquest_miscellaneous_1315644427
source Elsevier ScienceDirect Journals
subjects Algorithms
Computer programs
Defuzzification
Digital signal processing
Engine blocks
Fuzzy
Fuzzy control
Fuzzy hardware
Fuzzy software
Hardware
Mathematical models
Software
VLSI
title Defuzzification block: New algorithms, and efficient hardware and software implementation issues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defuzzification%20block:%20New%20algorithms,%20and%20efficient%20hardware%20and%20software%20implementation%20issues&rft.jtitle=Engineering%20applications%20of%20artificial%20intelligence&rft.au=Mahdiani,%20H.R.&rft.date=2013-01&rft.volume=26&rft.issue=1&rft.spage=162&rft.epage=172&rft.pages=162-172&rft.issn=0952-1976&rft.eissn=1873-6769&rft_id=info:doi/10.1016/j.engappai.2012.07.001&rft_dat=%3Cproquest_cross%3E1315644427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1315644427&rft_id=info:pmid/&rft_els_id=S0952197612001601&rfr_iscdi=true