Anti-methicillin-resistant Staphylococcus aureus (MRSA) substance from the marine bacterium Pseudomonas sp. UJ-6
Abstract A multivalent approach to discover a novel antibiotic substance against methicillin-resistant Staphylococcus aureus (MRSA), a marine bacterium, UJ-6, exhibiting an antibacterial activity against MRSA was isolated from seawater. The isolated strain was identified to be Pseudomonas sp. by the...
Gespeichert in:
Veröffentlicht in: | Environmental toxicology and pharmacology 2013-03, Vol.35 (2), p.171-177 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract A multivalent approach to discover a novel antibiotic substance against methicillin-resistant Staphylococcus aureus (MRSA), a marine bacterium, UJ-6, exhibiting an antibacterial activity against MRSA was isolated from seawater. The isolated strain was identified to be Pseudomonas sp. by the morphology, biochemical, and genetical analyses. The ethyl acetate extract of Pseudomonas sp. UJ-6 culture showed significant ant-MRSA activity. Bioassay-guided isolation of the extract using a growth inhibitory assay led to the isolation and identification of an active compound exhibiting anti-MRSA activity. Based on the analyses of the physicochemical and spectroscopic data including nuclear magnetic resonance and mass, the compound was identified to be 1-acetyl-beta-carboline. The minimum inhibitory concentration (MIC) of the compound was determined to be in a range of 32–128 μg/ml against MRSA strains. The MIC values against MRSA were superior or equal to those of other natural compounds such as catechins, suggesting that 1-acetyl-beta-carboline would be a good candidate in applications of the treatment of MRSA infection. |
---|---|
ISSN: | 1382-6689 1872-7077 |
DOI: | 10.1016/j.etap.2012.11.011 |