The Group Calibration Index: a group-based approach for assessing forecasters’ expertise when external outcome data are missing
The Group Calibration Index (GCI) provides a means of assessing the quality of forecasters’ predictions in situations that lack external feedback or outcome data. The GCI replaces the missing outcome data with aggregated ratings of a well-defined reference group. A simulation study and two experimen...
Gespeichert in:
Veröffentlicht in: | Theory and decision 2012-10, Vol.73 (4), p.671-685 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Group Calibration Index (GCI) provides a means of assessing the quality of forecasters’ predictions in situations that lack external feedback or outcome data. The GCI replaces the missing outcome data with aggregated ratings of a well-defined reference group. A simulation study and two experiments show how the GCI classifies forecaster performance and distinguishes between forecasters with restricted information and those with complete information. The results also show that under certain circumstances, where members of the reference group have high-quality information, the new GCI will outperform expert classification that is based on traditional calibration indices. |
---|---|
ISSN: | 0040-5833 1573-7187 |
DOI: | 10.1007/s11238-011-9265-4 |