Cell cycle inhibitory effects of leaf extract from Curcuma vamana M. Sabu & Mangaly on mitotically synchronous cultures of Physarum polycephalum Schw

Leaf extracts of C. vamana, endemic to Kerala state in India, were found to inhibit cell cycle progression in synchronous cultures of P. polycephalum in a concentration and phase-specific manner. Crude alkaloid extract (CAE) elicited maximum cell cycle delays in comparison to soxhletted chloroform,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of experimental biology 2013-01, Vol.51 (1), p.81-87
Hauptverfasser: Rajan, I, Remitha, R, Jayasree, P R, Kumar, P R Manish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Leaf extracts of C. vamana, endemic to Kerala state in India, were found to inhibit cell cycle progression in synchronous cultures of P. polycephalum in a concentration and phase-specific manner. Crude alkaloid extract (CAE) elicited maximum cell cycle delays in comparison to soxhletted chloroform, acetone and aqueous extracts. Total alkaloid content of CAE was found to be 64.9 mg/g. CAE showed lowest DPPH radical scavenging activity. Other extracts with higher free radical scavenging activity exhibited lesser cell cycle inhibiting potential. Upto 21% decrease in nuclear DNA was observed in CAE treated samples. However, genotoxicity as evidenced by comet assay was not observed. The extracts were also found to be non-toxic to human RBCs at the highest concentration tested (750 microg/mL). CAE treatment completely suppressed a 63 kDa polypeptide with a concomitant, but weak induction of a 60 kDa polypeptide suggesting that these may be cell cycle related. CAE was found to possess potent antiproliferative activity against PBLs. The study clearly demonstrates the cell cycle inhibitory activity of C. vamana leaf extracts, with CAE being the most potent of them.
ISSN:0019-5189