Binding affinities and activation of Asp712Ala and Cys100Ser mutated kinin B1 receptor forms suggest a bimodal scheme for the molecule of bound-DABK

Mutant forms of kinin B1 receptor (B1R) and analogs of the full agonist des-Arg9-bradykinin (DABK) were investigated aiming to verify the importance of selected receptor residues and of each agonist-peptide residue in the specific binding and activation. Linked by a specific disulfide bond (Cys100–C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regulatory peptides 2013-02, Vol.181, p.37-44
Hauptverfasser: Rodrigues, E.S., Martin, R.P., Silva, R.F., Nakaie, C.R., Oliveira, L., Shimuta, S.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mutant forms of kinin B1 receptor (B1R) and analogs of the full agonist des-Arg9-bradykinin (DABK) were investigated aiming to verify the importance of selected receptor residues and of each agonist-peptide residue in the specific binding and activation. Linked by a specific disulfide bond (Cys100–Cys650), the N-terminal (Nt) and the EC3 loop C-terminal (Ct) segments of angiotensin II (AngII) receptor 1 (AT1R) have been identified to form an extracellular site for binding the agonist Nt segment (Asp1 and Arg2 residues). Asp712 residue at the receptor EC3 loop binds the peptide Arg2 residue. By homology, a similar site might be considered for DABK binding to B1R since this receptor contains the same structural elements for composing the site in AT1R, namely the disulfide bond and the EC3 loop Asp712 residue. DABK, Alan-DABK analogs (n=Ala1-, Ala2-, Ala3-, Ala4-, Ala5-, Ala6-, Ala7-, Ala8-DABK), and other analogs were selected to binding wild-type, Asp712Ala and Cys100Ser mutated B1R receptors. The results obtained suggested that the same bimodal scheme adopted for AngII-AT1R system may be applied to DABK binding to B1R. The most crucial similarity in the two cases is that the Nt segments of peptides equally bind to the homologous Asp712 residue of both AT1R and B1R extracellular sites. Confirming this preliminary supposition, mutation of residues located at the B1R extracellular site as EC3 loop Asp712 and Cys100 caused the same modifications in biological assays observed in AT1R submitted to homologous mutations, such as significant weakening of agonist binding and reduction of post-receptor-activation processes. These findings provided enough support for defining a site that determines the specific binding of DABK to B1R receptors. ► The N-terminal segment of DBK binds to extracellular site as EC3 loop of BKRB1. ► The lack of second disulfide bond of BKRB1 leads to a weak agonist binding. ► Interaction between DBK and BKRB1 follows the same bimodal pattern of AngII and AGTR1.
ISSN:0167-0115
1873-1686
DOI:10.1016/j.regpep.2012.12.014