Design and synthesis of biaryl aryl stilbenes/ethylenes as antimicrotubule agents

Two new series of compounds E-2,3,4-trimethoxy-6-styrylbiphenyls and 2,3,4-trimethoxy-6-(1-phenylvinyl)biphenyls were designed, synthesized and evaluated for antitubulin activity. A common intermediate 4,5,6-trimethoxybiphenyl-2-carbaldehydes was employed to generate the two scaffolds. Majority of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of medicinal chemistry 2013-02, Vol.60, p.305-324
Hauptverfasser: Kumar, A. Suresh, Reddy, M. Amarnath, Jain, Nishant, Kishor, Chandan, Murthy, T. Ramalinga, Ramesh, Deepa, Supriya, Bhukya, Addlagatta, Anthony, Kalivendi, Shasi V., Sreedhar, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two new series of compounds E-2,3,4-trimethoxy-6-styrylbiphenyls and 2,3,4-trimethoxy-6-(1-phenylvinyl)biphenyls were designed, synthesized and evaluated for antitubulin activity. A common intermediate 4,5,6-trimethoxybiphenyl-2-carbaldehydes was employed to generate the two scaffolds. Majority of the analogs inhibited cell proliferation and those functionalized with 3,4-(1,3-dioxolane) and 3,4-difluoro groups were identified as effective inhibitors in both the series. Treatments with 19b, 19c, 22b and 22c arrested cells at G2/M phase, disrupted microtubule network, accumulated tubulin in the soluble fraction and manifested an increased expression of the G2/M marker, Cyclin B1. Molecular docking analysis demonstrated the interaction of these compounds at the colchicine binding site of tubulin. [Display omitted] Two new series of compounds E-2,3,4-trimethoxy-6-styrylbiphenyls and 2,3,4-trimethoxy-6-(1-phenylvinyl)biphenyls were designed, synthesized and evaluated for antitubulin activity. Effective compounds interacted at colchicine binding site of tubulin. ► Twenty two biaryl aryl stilbenes/ethylenes were designed and synthesized. ► Most of the compounds inhibited cell proliferation against 4 cancer cell lines. ► Potent derivatives arrested cells at G2/M phase, disrupted microtubule network. ► Investigated compounds dock at the colchicine binding site of the tubulin.
ISSN:0223-5234
1768-3254
DOI:10.1016/j.ejmech.2012.12.008