Substrate range and enantioselectivity of epoxidation reactions mediated by the ethene-oxidising Mycobacterium strain NBB4

Mycobacterium strain NBB4 is an ethene-oxidising micro-organism isolated from estuarine sediments. In pursuit of new systems for biocatalytic epoxidation, we report the capacity of strain NBB4 to convert a diverse range of alkene substrates to epoxides. A colorimetric assay based on 4-(4-nitrobenzyl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2013-02, Vol.97 (3), p.1131-1140
Hauptverfasser: Cheung, Samantha, McCarl, Victoria, Holmes, Andrew J., Coleman, Nicholas V., Rutledge, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mycobacterium strain NBB4 is an ethene-oxidising micro-organism isolated from estuarine sediments. In pursuit of new systems for biocatalytic epoxidation, we report the capacity of strain NBB4 to convert a diverse range of alkene substrates to epoxides. A colorimetric assay based on 4-(4-nitrobenzyl)pyridine) has been developed to allow the rapid characterisation and quantification of biocatalytic epoxide synthesis. Using this assay, we have demonstrated that ethene-grown NBB4 cells epoxidise a wide range of alkenes, including terminal (propene, 1-butene, 1-hexene, 1-octene and 1-decene), cyclic (cyclopentene, cyclohexene), aromatic (styrene, indene) and functionalised substrates (allyl alcohol, dihydropyran and isoprene). Apparent specific activities have been determined and range from 2.5 to 12.0 nmol min −1 per milligram of cell protein. The enantioselectivity of epoxidation by Mycobacterium strain NBB4 has been established using styrene as a test substrate; ( R )-styrene oxide is produced in enantiomeric excesses greater than 95%. Thus, the ethene monooxygenase of Mycobacterium NBB4 has a broad substrate range and promising enantioselectivity, confirming its potential as a biocatalyst for alkene epoxidation.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-012-3975-6