Tree community structure, dynamics, and diversity partitioning in a Bornean tropical forested landscape
Human-modified forested landscapes are prevalent in the tropics, and the role of complex mosaics of diverse vegetation types in biodiversity conservation remains poorly understood. Demographic traits and the spatial pattern of biodiversity are essential information when considering proper forest man...
Gespeichert in:
Veröffentlicht in: | Biodiversity and conservation 2013-01, Vol.22 (1), p.127-140 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human-modified forested landscapes are prevalent in the tropics, and the role of complex mosaics of diverse vegetation types in biodiversity conservation remains poorly understood. Demographic traits and the spatial pattern of biodiversity are essential information when considering proper forest management and land use strategies. We compared the tree community structure (stem density, basal area, tree diversity, abundance of rare, endemic, and upper-layer trees, and species composition) and the forest dynamics (mortality, recruitment rate, and increments of basal area, and above- and below-ground biomass) of 39–46 plots among five dominant forest types: young and old fallows, rubber plantations, and fragmented and old-growth forests in Sarawak, Malaysia. We also explored how tree diversity was distributed across different spatial scales using additive partitioning of diversity. Swidden cultivation and rubber plantations showed decreased stem density, basal area, tree diversity, abundance of rare, endemic, and upper-layer trees, and increments of above- and below-ground biomass, which affected tree mortality, dominant trees, and species composition. Little distinction in species composition was observed among young and old fallows and rubber plantations, indicating a relatively quick recovery of the tree community in the early stages. The highest diversity was found among forest types, indicating that the whole forested landscape comprises a suitable scale for tree biodiversity conservation in the region. Our results suggest that although fragmented and old-growth forests have an irreplaceable role and a high priority in conserving biodiversity and sustaining the function of the forest ecosystem, secondary forests may also have a reinforcing role in maintaining tree diversity in the region, especially under the current circumstances in which a large portion of the landscape is human-modified and faces an increasing threat from the expansion of oil palm plantations. |
---|---|
ISSN: | 0960-3115 1572-9710 |
DOI: | 10.1007/s10531-012-0405-0 |