Transformation: The next level of regulation

The textbook view that a primary sequence determines the unique fold of a given protein has been challenged by identification of proteins with variant structures, such as prions. Our recent studies revealed that the transcription factor RfaH simultaneously changes its topology and function. RfaH is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RNA biology 2012-12, Vol.9 (12), p.1418-1423
Hauptverfasser: Knauer, Stefan H., Rösch, Paul, Artsimovitch, Irina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The textbook view that a primary sequence determines the unique fold of a given protein has been challenged by identification of proteins with variant structures, such as prions. Our recent studies revealed that the transcription factor RfaH simultaneously changes its topology and function. RfaH is a two-domain protein whose N-terminal domain binds to transcribing RNA polymerase, stimulating its processivity. The α-helical C-terminal domain masks the RNA polymerase-binding site of the N-terminal domain, preventing unwarranted recruitment to genes lacking a specific DNA sequence. Upon binding to its DNA target, RfaH domains dissociate, and the C-terminal domain refolds into a β-barrel. This dramatic transformation allows binding to the ribosomal protein S10 and subsequent recruitment of a ribosome, coupling transcription and translation. We define RfaH as first example of "transformer proteins", in which two alternative structural states have distinct cellular functions and hypothesize that transformer proteins may be widespread in nature.
ISSN:1547-6286
1555-8584
1555-8584
DOI:10.4161/rna.22724